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J. Phys. A: Math. Gen. 18 (1985) 3381-3387. Printed in Great Britain 

The generalised Euler formula from Poisson's summation 
formula and some applications 

V B Bezerra and A N Chaba 
Universidade Federal da Paraiba, Departamento de Fisica CCEN, Jo io  Pessoa, Paraiba, 
B r a d  

Received 7 November 1984 

Abstract. The generalised Euler formula is derived from Poisson's summation formula. 
In special cases, it reduces to the ordinary Euler formula and Walfisz formula in one 
dimension. As an application, we use the generalised Euler formula to calculate the 
expression for the number of quantum states of a single non-relativistic particle in a 
rectangular three-dimensional box of finite size. 

1. Introduction 

Euler's formula for the sum of powers of natural numbers is (Gradshteyn and Ryzhik 
1980) 

(last term contains either N or N 2 ) ,  the B,'s appearing on the right-hand side of the 
above equation are Bernoulli numbers (Gradshteyn and Ryzhik 1980) and N is a 
positive integer. Roe (1941) made use of this formula to calculate the number of 
normal modes, N ( v ) ,  which are solutions of the Helmholtz equation, ( V 2 +  
4.rr2v2/c2)JI=0, with frequencies less than or equal to v and subject to Neumann 
boundary conditions (NBC),  aJI /an = 0, and Dirichlet boundary conditions (DBC), 9 = 0. 
He considered enclosures of various shapes which include, among others, rectangular 
( 3 ~ ) ,  cylindrical and spherical ones and obtained expressions which contain the bulk 
term (a volume) and the surface term (a surface area) in all cases but in the case 
of the rectangular box, he also obtained the edge term (a total length of edges). In 
his calculations, where he employed equation ( l ) ,  the numbers corresponding to N 
were not necessarily integers but he treated them as such, so that the results obtained 
by him were naturally approximate. 

In this paper, in 0 2, we shall derive, from the Poisson's summation formula (PSF), 

the generalised form of the expression for the sum on the left-hand side of equation 
(1) for the case when N is not necessarily an integer. We call this new result the 
generalised Euler's formula. The upper limit of this sum is supposed to be [ N I ,  that 
is, the integral part of N but the result is expressed in terms of N itself. The motivation 
for deriving this result, clearly, came from the work of Roe referred to above. We 
further show that the new formula reduces to the ordinary Euler formula in the case 
whkn N is an integer and also, for k = 0, it reduces to the Walfisz formula (see, e.g., 
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Baltes and Steinle 1977, Chaba 1979) for the number of lattice points in an hypelsphere 
(of given radius) in one dimension. In the end, in Q 3, we present, as an application 
of the generalised Euler formula, the calculation for the number of single-particle 
quantum states of a non-relativistic particle in a 3~ rectangular box and subject to 
Dirichlet boundary conditions (this problem is almost the same as one of the cases 
treated by Roe cited above) and the result obtained, which is exact, agrees with that 
obtained already (Freitas and Chaba 1983). Probably, using this new formula, we 
shall be able to improve the results in the case of cylindrical, spherical and other 
enclosures, treated earlier by Roe, as well. 

2. The generalised Euler formula from Poisson’s summation formula 

The PSF in one dimension (see, e.g., Chaba 1979) is 

F ( n ) =  2 [ +E += 
F ( x )  exp(-2riqx) dx. 

If F ( x )  be an even function of x, we can, from equation (2), easily arrive at the 
following alternative form of the PSF for the ‘partial’ sum XT=, F ( n ) ,  instead of the 
‘complete’ sum on the left-hand side of equation (2), 

X c F ( n )  = -iF(O)+ loX F ( x )  d x i  2 f loe F ( x )  cos(2rqx) dx. (3) 
n = l  q = l  

In equation (3), one needs the form of the function F ( x )  only for x 3 0. On the other 
hand, however, if we are given F(x)  for x 2 0, we can always define F ( x )  for x < 0 
in such a way that F ( x )  is an even function, so that the above result is valid for any 
function F(x) .  Now, we shall make use of the PSF in the form given in equation (3) 
to do the summation Er= ,  n k ,  where, now, N is not necessarily an integer. Firstly, we 
rewrite this sum as 

N a2 c n k =  2 n % ( N - n ) ,  
n = l  n = l  

where f ? ( x )  is the step function defined by 

when x z 0 
when x < 0. 

e ( x )  = 

Now using equation (3) in equation (4), we obtain 

k,o lom xk0(  N - x)  dx + 2 xkB( N - x )  cos(2nqx) d x  
q = 1  

N 1 n k = - l a  + 
n = l  

N 

= - $ S k , + j o  x k  d x + 2  f loN x k  cos(2rqx) dx. 
q = 1  

(4) 

Using the result in the tables (Gradshteyn and Ryzhik 1980) for the last integral in 



equation ( 5 ) ,  we get 

2 (  k!) -~ sin( k7r/2)5( k + l ) ,  
(27T)k+1 
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( 6 )  

where 5 ( n )  is the Riemann's zeta function. Equation (6) can also be written as 

N Nk+' Nk [ k / 2 1  (-1)"' f s in(27~qN)  
n k = k + l + -  n- (,,,=O C ( 2 m ) !  (k) ( ~ T N ) ~ " '  q2"*' 

" = I  

where the double summation involving cosines should appear only when ,% 3 1. 
Equation (6) or (7) is the generalised Euler formula. Now we shall study two special 
cases of equations (6) and (7) ,  namely, (i) when N is an  integer and  (ii) when k = 0. 

First we define E, the fractional part of N, as 
(i)  When N is an  integer 

E = N - [ N ] ,  O S E < l ,  (8) 

then equation (7) can be rewritten as 

2(k!) -fs,,-- sin( k7r/2)5( k + 1). 
( 2  7 T )  k+' 

In this equation, first we d o  the summations over q involving cosines and  sines which 
are tabulated (Gradshteyn and Ryzhik 1980) and  the results are given in terms of 
Bernoulli's polynomials, B , ( x ) .  These results are valid for O <  E <+. But for our 
purposes, it is enough, because actually we are interested in the case E -$ +O. After 
doing these summations, the two summations over m can be combined and we obtain 

When N approaches a n  integral value from above, E + +O and Bernoulli's polynomials 
are just Bernoulli's numbers, & ( E )  = B,. Then, the above equation becomes 

or writing the first few terms in the summation over i explicitly and  noting that B1 = -$ 
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and B3=0,  we get, 

C N n k = -  Nk+l+F+!!?(k) Nk- l+: ( : )  N k T 3 + .  . . 
n = l  k + l  2 2 1 

2(k!) -'a -~ sin( k.rr/2)l( k + 1). 
2 k0 (27r)k+1 

Equation (9) or (10) is just the ordinary Euler formula which is valid for integer N. 
Comparing equations (10) and ( l ) ,  we see that the last two terms in (10) substitute 
the phrase 'last term contains either N or N2' at the end of equation (1). 

In this case, equation (6) reduces to 
(ii) When k = 0 

1 sin(2.rrqx) 
l = x + - Z  - I  

n = 1  T q = l  q 

where we have replaced N by x which is not necessarily an integer. Therefore, the 
number of lattice points, n,(x), in a hypersphere of radius x in one dimension, which 
is actually equal to the number of lattice points between -x and +x can be written as 

X 

n l ( x ) = 1 + 2  1 
n = l  

On using equation (11) here, we obtain 

1 +03 sin(27rqx) 
nl(x) = 2x+- C' I 

.rrq=-co 4 
where the prime on the summation over q means that the term q = 0 is excluded from 
it. Equation (12) is the Walfisz formula (see, e.g., Chaba 1979) in one dimension. 

3. Applications 

As an application of the generalised Euler formula, we shall calculate the number of 
single-particle quantum states of a non-relativistic particle enclosed in a 3~ rectangular 
box with L1, L2 and L3 as the lengths of its edges and the eigenfunctions, CC,, being 
subject to the DBC (CC, = 0) on the walls of the box. These eigenfunctions are the 
solutions of the Schrodinger equation 

V2+ + k2+ = 0, k2 = 2mE/h2 (13) 

+(x, y ,  z)  = A sin( nl.rrx/ L , )  sin( n,.rry/ L2) sin( n37rz/ L 3 ) ,  (14) 

k= . r r (n : /L:+n: /L:+n: /L: )"2 ,  n,, n2, A,= 1 , 2 , 3 . .  . . (15) 

n:/ L: + n:/ L: + n:/ L: s K 2 /  7r2. (16) 

and have the form 

and the eigenvalues k are given by 

We shall calculate the total number of states N (  K )  with all allowed k s K or 

We shall closely follow the procedure of Roe (1941), except that we shall use our 
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generalised rather than the ordinary Euler formula used by him. We define n i ,  n;, n i  
as 

nl, = KLl/.rr, (17a) 

(176) 

n ;  = L2( K 2 /  7 ~ ' -  n:/  L;)lr2 

= ( L,/ L,)(  n I' - r ~ : ) " ~  = 121 ( n  i2 - n:)'12 

and 

nJ = L3( K 2/ .rr2 - n:/ L: - n:/ L:)'12 

= ( L ~ / L ~ ) ( ~ ; ~  - n:)'12 = / 3 2 ( n s 2 -  n:)'12, (17c) 

where I ,  = L,/L,. Here n:, n ; ,  ni  are not necessarily integers but, as was said before, 
Roe regarded them as such, leading him to the results which were only approximately 
correct. In terms of these, we can write N (  K ) ,  which is equal to the number of lattice 
points in an octant of an ellipse in the n space, as 

n l = l  n 2 = l  n3=1 

First we do the sum over n3 by using the generalised Euler formula and substitute 
for n i  from (17c), 

The summation over n2 involving sines is somewhat tricky and in order to do it, we 
first expand it in powers of n:/nS2 by the Taylor series expansion and then use the 
generalised Euler formula in the form of equation ( 6 ) .  After doing some algebra, 
we arrive at the following result: 

n'  

C sin[2.nql( n" -.n2)'12] 
n = l  

Using equation (20) and also equation (176) for n ;  in equation (19), we get 

x J1(2.rr12,( ?I:'- n : ) 1 / 2 ( l : 2 q : +  q y 2 ) ,  (21) 

where J , ( x )  is the Bessel function of the first kind and of order one. The summation 
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over n, involving J1 is also done in the same way as the sum over sines discussed 
above, with the result that 

n’ 

( n ‘ 2 - n 2 ” J l ( a ( n ’ 2 - n 2 ) ’ ’ 2 )  
n = l  

- n’a(  a 2 +  47r2q2)-’ cos[ n’( a2+47rzq2)1’21}. (22) 

Using equations (20) and (22) for the relevant summations in equation (21), we finally 
get 

+OC sin(2KqlL,) +m sin(2Kq2L2) + e  
q 2 = - m  27rq2 +I(  4 q l = - m  c 27rq, 

+ e  sin(2Kq3L3)) -- ;, 
q 3 = - m  27rqj 

This result is exact and agrees with the special case, for the rectangular 3~ box, of the 
more general result derived earlier by Freitas and Chaba (see equation (30) of Freitas 
and Chaba 1983) by making use of the Walfisz formula for the dimensionality d. The 
terms corresponding to q1 = q2 = q3 = 0 in the triple summation, q1 = q2 = 0, etc, in the 
double summations and q1 = 0, etc, in the single summations in equation (23) agree 
with the bulk, surface and edge terms of Roe’s result. In addition to these, there is 
one K-independent term (-Q) and the rest of the terms are of oscillatory nature and 
these last terms were qualitatively foreseen by Roe who referred to them as the 
fluctuating terms. According to him these terms are unimportant but we wish to point 
out that in problems where small k’s are important, as in the study of Bose-Einstein 
condensation in finite systems, these oscillatory terms (especially in the triple suAnma- 
tion in equation (23)) have a very important role to play (see, e.g., Chaba (1979) 
together with Chaba and Pathria (1978)). 

By slightly modifying the above procedure, we can calculate N ( K )  in the case of 
NBC on the walls of the rectangular box in three dimensions and also for other 
dimensionalities. Also, we hope to apply the generalised Euler formula to calculate 
N ( K )  for other enclosures like the cylinder and sphere treated earlier by Roe. 
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